Group Meeting

Lightweight Models for Real-Time Applications

Problem Statement

Collision Avoidance in Crowded Environments for AGV

Problem Statement Review

15 minutes

The Challenge

An AGV must operate **safely** in a factory where forklifts, workers, and other robots are constantly moving.

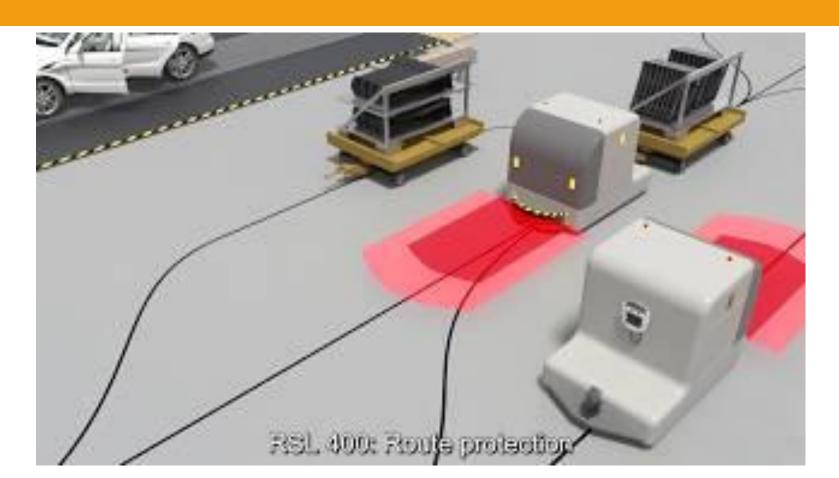
Discussion Points

- Context: factory environment with dynamic obstacles
- •Key objectives and success criteria
- Safety requirements and constraints

What is an AGV?

Automated Guided Vehicle

Mobile robots used in industrial facilities to transport materials without human intervention


Key Features

- Autonomous navigation
- Load carrying capability
- Safety systems
- Fleet coordination

Applications

- Manufacturing facilities
- Warehouses
- Distribution centers
- Hospitals

What is an AGV?

AGV Navigation Methods

Line Following

- Magnetic strips
- Colored tape
- Inductive wires

Beacon-Based

- Laser reflectors
- RFID tags
- UWB beacons

Natural Navigation

- LiDAR mapping
- Vision systems
- •SLAM algorithms

Natural navigation provides the most flexibility for dynamic environments and is our focus for collision avoidance

AGV Challenges in Crowded Environments

Key Challenges

Dynamic obstacles: Workers, forklifts, and other robots move unpredictably

Real-time response: Decisions must be made in milliseconds

Safety criticality: Human safety is paramount

Occlusion handling: Objects may be temporarily hidden from sensors

Varying speeds: Different entities move at different velocities

Solution requires robust sensor "fusion" + lightweight ML models for real-time prediction

Sensor Fusion for AGVs

Why Multiple Sensors?

Each sensor type has unique strengths and weaknesses. Combining data from multiple sensors provides comprehensive environmental understanding.

Complementary Capabilities

- •LiDAR: Accurate 2D distance measurements
- •Cameras: Visual recognition and classification
- •Ultrasonic: Close-range obstacle detection

LiDAR Sensors

Light Detection and Ranging

Strengths

- •High-precision 2D mapping
- Works in various lighting
- Long-range detection
- Fast scanning rates
- Accurate distance measurement

Limitations

- Expensive hardware
- Large data volumes
- •Struggles with reflective surfaces
- Limited object classification

LiDAR Sensors

Light Detection and Ranging

Camera Sensors

Vision-Based Perception

Strengths

- Rich visual information
- Object classification
- Color and texture recognition
- Cost-effective
- Human-interpretable data

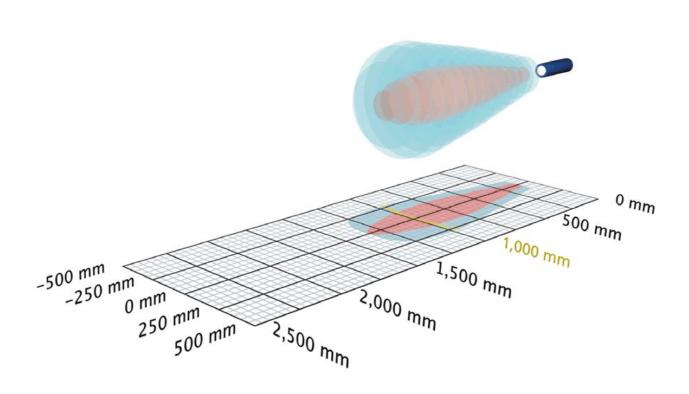
Limitations

- Lighting dependent
- Depth estimation challenges
- Computationally intensive
- Occlusion problems

Ultrasonic Sensors

Sound-Based Detection

Strengths


- Very low cost
- Close-range accuracy
- Works in any lighting
- Simple integration
- Detects transparent objects

Limitations

- Limited range (few meters)
- Wide beam angle
- Affected by temperature
- Slow update rate
- No object identification

Ultrasonic Sensors

Sound-Based Detection

Sensor Integration Strategy

Sensor Combination

LiDAR: Primary sensor for environment mapping and precise distance measurement in (180°)

360° field of view

Cameras: Object classification and trajectory prediction using computer vision and ML models

Ultrasonic: Safety backup for close-range detection and blind spot coverage

Work Environment & Resources

20 minutes

Technical Infrastructure

- •Available hardware (GPUs, computing resources)
- Software tools and frameworks
- Development platforms and version control

Collaboration Tools

- Shared documentation platforms
- Code repository setup
- Data storage and sharing solutions

Timeline & Milestones

15 minutes

Key Dates

- **07.11.25:** Collaborate & Discuss research findings
- 21.11.25: Propose solutions & discuss data (initial proof of concept implementation)
- **04.12.25:** AGV Lab visit & Aiut Company tour (basic implementation & validation)
- 09.01.26: Mid-term presentations & milestone decisions (full implementation & validation on AGVs)
- 23.01.26: Final presentations & results analysis (prepare a document + publication)

Plan buffer time for challenges and iterations

Initial Research Plan

20 minutes

Research Topics

- •Sensor fusion techniques for multi-modal data
- •Real-time object detection models (YOLO, SSD, MobileNet)
- •Lightweight model design and optimization
- •Path prediction and collision avoidance algorithms

Divide topics and set research deadlines before next meeting (07.11.25)

1. Core System Requirements

What	How	Why	Comments
Multi-Sensor Utilization	 Sensors to integrate: LiDAR, ultrasonic sensors, cameras Additional data streams: Energy charge level, payload weight (after basic implementation) 	Comprehensive environmental awareness and better prediction accuracy	
Unified World Representation	 Create a single "map" that consolidates all sensor data in real-time Update continuously as new sensor data streams in Use this unified representation for all decision-making 	Avoids direct sensor fusion complexity, provides a clear state representation	The idea should be refined by the corresponding sub-team
Safety Architecture	Multiple protective zones: Warning zone (pre-emptive detection) Slowdown zone (reduce speed) Emergency stop zone (immediate halt) Real-time constraints: Define maximum acceptable latency (suggest <100ms for detection-to-response)	Graceful degradation: The System must handle sensor failures safely	
Single-AGV Considerations Focus on fleet orchestration in the future	Focus on single-AGV collision avoidance	Fleet coordination is typically handled at a higher level (fleet management system)	Future extensions: • AGV-to-AGV communication • Priority assignment • Conflict resolution protocols • Federated learning

2. Development Strategy

What	How	Why	Comments
Simulation-First Approach	Strategy: Develop and test algorithms in simulation Integrate with a real AGV as the final stage Plan for sim-to-real transfer techniques Simulators: Gazebo, Webots, or NVIDIA Isaac Sim	Real-world data is difficult to obtain initially	
Modular Architecture	Example: Sensor Layer (modular interfaces) ↓ Perception Layer (object detection, tracking, classification) ↓ World Model (unified representation) ↓ Decision Layer (risk assessment, behavior selection) ↓ Control Layer (speed/trajectory adjustment)	Easy transition from simulated to real sensors	Myroslav Mishc Use ROS (Robot Operating System) or similar middleware?

3. Perception & Detection

What	How	Why	Comments
Obstacle Classification	 Static obstacles: Walls, equipment, fixed structures Dynamic obstacles: Moving workers, forklifts, other robots 	Different handling strategies for each type	
Motion Prediction (not the high-priority goal)	Estimate object speed and direction Predict trajectories for dynamic obstacles	Proactive collision avoidance	
Environmental Challenges to Address	Add these challenges to the simulation	 Lighting variations Reflective surfaces Transparent obstacles (glass, plastic) Sensor occlusions 	

4. Decision-Making & Control

What	How	Why	Comments
Intelligent Activation	 Principle: Only activate collision avoidance when necessary Trigger collision avoidance module when: Obstacles detected in the warning zone Trajectory conflict predicted Uncertainty levels increase 	Don't interfere with main navigation during regular operation	
Speed Management	Dynamically adjust speed based on: Proximity to obstacles Risk level of the current maneuver Environmental uncertainty Available stopping distance		
Resource-Aware Planning (not top priority)	 Account for the current payload when calculating: Braking distances Maximum safe speeds Turning capabilities 	Consider available energy for avoidance maneuvers	This may be a future extension, depending on the scope
Explainability & Transparency (not top priority)	Keep models interpretable where possible	Essential for: • Debugging and testing • Regulatory compliance (ISO 3691-4, ANSI B56.5)	

5. Validation & Testing Strategy

What	How	Comments
Success Metrics (to be defined)	 Collision avoidance rate False positive rate (unnecessary stops) Response time Path efficiency (deviation from optimal route) System uptime and reliability 	
Test Scenarios	 Static obstacle detection Dynamic obstacle avoidance Multi-obstacle environments Sensor failure conditions Edge cases (reflective surfaces, lighting changes) 	
Safety Validation	 Compliance with industrial safety standards Emergency stop testing Fail-safe behavior verification 	

6. Summary of Priorities

High Priority (Core Functionality)

- Simulation environment setup
- Multi-sensor fusion architecture & Unified world model
- Static/dynamic obstacle differentiation

Medium Priority (Important but Can Iterate)

- Trajectory modification algorithm
- Intelligent activation logic
- Speed management

Lower Priority

- Motion prediction
- Explainable decision-making
- Validation framework
- Resource-aware planning

Future Extensions:

- Federated learning
- Multi-AGV coordination

7. Team Work Division Strategy

Phase 1 (Weeks 1-2): Foundation

• 2 people: Simulation environment

• 2 people: Research & prototype perception algorithms